Elastic Strain Recovery

\[\sigma_{y_0} = \text{Yield Strength} \] (typically defined at \(\varepsilon = 0.002 \))
Initial loading

\[\sigma_{y_i} = \text{Yield Strength} \]
After unloading and reloading

Note: for many metals YS↑ after plastic deformation
Tensile Test
Hardening

• An increase in σ_y due to plastic deformation.

![Stress-strain curve with hardening](image)

• Curve fit to the stress-strain response:

$$\sigma_T = C \left(\varepsilon_T \right)^n$$

- hardening exponent:
 - $n=0.15$ (some steels)
 - $n=0.5$ (some copper)

“true” stress (F/A)

“true” strain: $\ln(L/L_0)$
CHAPTER 7: DISLOCATIONS AND STRENGTHENING

ISSUES TO ADDRESS...

• Why are dislocations observed primarily in metals and alloys?

• How are strength and dislocation motion related?

• How do we increase strength?

• How can heating change strength and other properties?
Dislocations & Materials Classes

- **Metals**: Disl. motion easier.
 - non-directional bonding
 - close-packed directions for slip.

- **Covalent Ceramics** (Si, diamond): Motion hard.
 - directional (angular) bonding

- **Ionic Ceramics** (NaCl): Motion hard.
 - need to avoid ++ and -- neighbors.
What happens when bonds snap?

Two possible results:
How does plastic deformation happen?

Calculating the shear stress for the mechanism above gives a result of $\sim G/6$ (with $G =$ shear modulus).

Typical experimental values are however $\sim 10^{-4} - 10^{-6} G$

Plastic deformation does NOT happen this way!

Crystals contain dislocations.

Most plastic deformation happens by the movement of dislocations across the material.
Dislocation Motion

- Produces plastic deformation,
- Depends on incrementally breaking bonds.

If dislocations don't move, deformation doesn't happen!

Adapted from Fig. 7.1, *Callister 6e*. (Fig. 7.1 is adapted from A.G. Guy, *Essentials of Materials Science*, McGraw-Hill Book Company, New York, 1976. p. 153.)

Adapted from Fig. 7.8, *Callister 6e*.

Adapted from Fig. 7.9, *Callister 6e*. (Fig. 7.9 is from C.F. Elam, *The Distortion of Metal Crystals*, Oxford University Press, London, 1935.)

Plastically stretched zinc single crystal.
Dislocation Motion

Edge Dislocation Motion

Screw Dislocation Motion
Dislocation Motion

Dislocation Motion:
Response to shear stress

Analogy between caterpillar motion and dislocation motion
Arrangement of Atoms Around an Edge Dislocation

- **Dislocation “Core”**
 - Region where the bonding is “wrong”
- **Dislocation “Strain Field”**
 - Planes near the dislocation are bent, or strained
 - Bonds are stretched, compressed, or “bent” but not “wrong”
Characteristics of Dislocations

Dislocation repulsion
(same sense of dislocations)

Dislocation attraction
(opposite sense dislocations)
The Tangent Vector or Line Vector

Line Vector
Identifies the orientation of the core in the crystal
 Can change along the dislocation
 Dislocations don’t have to be “straight”
Geometry and Nomenclature of Dislocation Glide: Glide Planes

- Glide Plane
 - Definition: a plane on which a specific dislocation can glide
 - Physically: the glide plane must contain b and t
 - Mathematically: $n = b \times t$
 (note $b =$ Burgers vector and $t =$ dislocation line tangent vector)

Edge Dislocation

\[\vec{b} \perp \vec{t} \Rightarrow \]

Only ONE Glide Plane!

Screw Dislocation

\[\vec{b} \parallel \vec{t} \Rightarrow \]

MANY Glide Planes!

BUT...
“REAL” Glide Planes for Screw Dislocations

• **What Really Happens:**
 - Glide of Screw Dislocations TENDS to occur on Close-Packed Planes

• **Common Glide Planes:**
 - (111) in fcc metals: True Close-packed Plane
 - (0001) in hcp metals: True Close-packed Plane
 - (110) in bcc metals: Closest Packed Plane
Nomenclature for Dislocation Glide

Definitions

Slip Deformation of crystalline materials by dislocation *Glide* (also called yielding)

Slip Direction is the direction of the shear displacement incurred
 - $\parallel b$, *NOT* the direction of dislocation motion!
 - Burgers vectors like to be as short as possible
 - \Rightarrow TENDS to be a closely-packed direction

Slip Plane is the plane on which the dislocations glide

Slip Systems are combinations of slip planes and slip directions in which slip can occur by the glide of a dislocation (b,n) pairs
Slip Systems

To specify a *slip system*, need:

- Slip plane, \(n \)
 - Usually a closely-packed plane

- A *slip direction* (Burgers vector!), \(b \)
 - Usually a close-packed direction
 - \(b \) lies in the slip plane
 - If \(b \) of a screw dislocation isn’t in the plane, the dislocation isn’t either
 - If \(b \) of an edge dislocation isn’t in the plane, the dislocation can’t glide
Slip Systems in FCC Metals

Slip Directions
Common b: $a/2<110>$

Slip Plane
Close-packed planes: $\{111\}$

Slip Systems
b must lie in the slip plane ($b \perp n$)

There are TWO $\{111\}$ planes that contain each possible $<110>$ Direction
∴ Six $<110>$ type directions leads to 12 slip systems!
Slip Systems in BCC Metals

Slip Directions
- Common \(\mathbf{b} \): \(a/2<111> \)

Slip Plane
- Closely-Packed Planes are \{110\}

Slip Systems
- \(\mathbf{b} \) must lie in the slip plane (\(\mathbf{b} \perp \mathbf{n} \))

Two \(<111>\) type Directions in Each \{110\} Plane

\[\therefore \text{Six \{110\} type planes yield 12 slip systems of this type} \]
Slip Systems in HCP Metals

Slip Directions
- Common \(\mathbf{b} \): \(<11\text{-}20>\)

Slip Plane
- Close-packed planes: \{0001\}

Slip Systems
- \(\mathbf{b} \) must lie in the slip plane \((\mathbf{b} \perp \mathbf{n}) \)

There is only ONE \{0001\} plane!

\[\therefore \text{ Three most favored slip systems!} \]

AND they all lie in a plane!
Table 7.1 Slip Systems for Face-Centered Cubic, Body-Centered Cubic, and Hexagonal Close-Packed Metals

<table>
<thead>
<tr>
<th>Metals</th>
<th>Slip Plane</th>
<th>Slip Direction</th>
<th>Number of Slip Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face-Centered Cubic</td>
<td>{111}</td>
<td>\langle 1\overline{1}0 \rangle</td>
<td>12</td>
</tr>
<tr>
<td>Cu, Al, Ni, Ag, Au</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body-Centered Cubic</td>
<td>{110}</td>
<td>\langle \overline{1}11 \rangle</td>
<td>12</td>
</tr>
<tr>
<td>(\alpha)-Fe, W, Mo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)-Fe, W</td>
<td>{211}</td>
<td>\langle \overline{1}11 \rangle</td>
<td>12</td>
</tr>
<tr>
<td>(\alpha)-Fe, K</td>
<td>{321}</td>
<td>\langle \overline{1}11 \rangle</td>
<td>24</td>
</tr>
<tr>
<td>Hexagonal Close-Packed</td>
<td>{0001}</td>
<td>\langle 11\overline{2}0 \rangle</td>
<td>3</td>
</tr>
<tr>
<td>Cd, Zn, Mg, Ti, Be</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti, Mg, Zr</td>
<td>{10\overline{1}0}</td>
<td>\langle 11\overline{2}0 \rangle</td>
<td>3</td>
</tr>
<tr>
<td>Ti, Mg</td>
<td>{10\overline{1}1}</td>
<td>\langle 11\overline{2}0 \rangle</td>
<td>6</td>
</tr>
</tbody>
</table>

(\textbf{Red arrow} ← indicates most common slip systems)
Example: Dislocations in Iron

Dislocations are lined up!

Two different grains
Even More on Shear Stress

For uniaxial deformation: maximum shear stress at 45°

But … this does not take crystallography into account!!!
Even More on Shear Stress

- Crystals slip due to a resolved shear stress, τ_R.
- Applied tension can produce such a stress.

\[\tau_R = F_s / A_s \]

Relation between σ and τ_R

\[\tau_R = \sigma \cos \lambda \cos \phi \]
Critical Resolved Shear Stress

• Condition for dislocation motion: \(\tau_R > \tau_{CRSS} \)

• Crystal orientation can make it easy or hard to move disl.

\[\tau_R = \sigma \cos \lambda \cos \phi \]

- \(\tau_R = 0 \)
 \(\lambda = 90^\circ \)

- \(\tau_R = \sigma / 2 \)
 \(\lambda = 45^\circ \),
 \(\phi = 45^\circ \)

- \(\tau_R = 0 \)
 \(\phi = 90^\circ \)

Typically \(10^{-4} \Gamma \) to \(10^{-2} \Gamma \)
Dislocation Motion in Polycrystals

- Slip planes & directions \((\lambda, \phi)\) change from one crystal to another.
- \(\tau_R\) will vary from one crystal to another.
- The crystal with the largest \(\tau_R\) yields first.
- Other (less favorably oriented) crystals yield later.

Adapted from Fig. 7.10, Callister 6e.
(Fig. 7.10 is courtesy of C. Brady, National Bureau of Standards [now the National Institute of Standards and Technology, Gaithersburg, MD].)