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Hydrogen Induced Fast Fracture in Ferritic Steels 
One of the recurring anomalies in the hydrogen induced fracture of high strength steels is the apparent 
disconnect between the toughness and tensile strength. For example, the toughness of a high strength 
steel is typically reduced from approximately 100	MPa√m  to about 20	MPa√m  in the presence of 
hydrogen while concurrently the strength reduces from 2 GPa to about 400 MPa. Traditional fracture 
mechanics then suggests that quasi-brittle fracture under uniaxial tension occurred by the growth of a 
pre-existing flaw of size ≈ 1600	µm. There is no evidence of the presence of such large pre-existing flaws 
in high quality steels. This raises the question as to what is the hydrogen-mediated fracture process that 
reduces the strength of such steels?  
Here we propose, supported by detailed atomistic and continuum calculations, that unlike macroscopic 
toughness, hydrogen-mediated tensile failure is a result of a fast-fracture mechanism. Specifically, we 
show that failure originates from the fast propagation of cleavage cracks that initiate from cavities that 
form around inclusions such as carbide particles. The failure process occurs in two stages. In stage-A, 
hydrides rapidly form around the roots of stressed notches on the cavity surfaces with hydrogen fed from 
the hydrogen gas within the cavity. These hydrides promote cleavage fracture with the cracks 
propagating at > 100	ms/0  until the hydrogen gas in the cavity is exhausted. Predictions of this 
hydrogen-assisted crack growth mechanism are supported by atomistic calculations of binding energies, 
mobility barriers and molecular dynamics calculations of the fracture process. Typically, cracks grow by 
less than 1 µm via this hydrogen-assisted mechanism and thus insufficient to cause macroscopic fracture 
of the specimen. However, this stage is then followed by a stage-B process where these fast propagating 
cracks can continue to grow, now in the absence of hydrogen supply, given an appropriate level of remote 
tensile stress. This is surprising because the fracture energy is now that of Fe in the absence of H and 
cleavage fracture requires opening tractions on the order of 15 GPa to be generated. Thus, fracture is 
usually precluded due to plasticity around the crack-tip. Here we show via macroscopic continuum crack 
growth calculations in a rate dependent elastic-plastic solid with fracture modelled using a cohesive zone 
that cleavage is possible if the crack propagates fast enough. This is because strain-rates at the tips of fast 
propagating cracks are sufficiently high for the drag on the motion of dislocations resulting from phonon 
scattering to limit plasticity. This combined atomistic/continuum model is used to explain a host of well-
established experimental observations including (but not limited to): (i) insensitivity of the strength to the 
concentration of trapped hydrogen; (ii) the extensive microcracking in addition to the final cleavage 
fracture event and (iii) the higher susceptibility of high strength steels to hydrogen embrittlement. 
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